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The phenomenological theory of ferroelectricity in spiral magnets presented in �M. Mostovoy, Phys. Rev.
Lett. 96, 067601 �2006�� is generalized to describe consistently states with both uniform and modulated-in-
space ferroelectric polarizations. A key point in this description is the symmetric part of the magnetoelectric
coupling since, although being irrelevant for the uniform component, it plays an essential role for the nonuni-
form part of the polarization. We illustrate this importance in generic examples of modulated magnetic sys-
tems: longitudinal and transverse spin-density wave states and planar cycloidal phase. We show that even in the
cases with no uniform ferroelectricity induced, polarization correlation functions follow the soft magnetic
behavior of the system due to the magnetoelectric effect. Our results can be easily generalized for more
complicated types of magnetic ordering, and the applications may concern various natural and artificial systems
in condensed matter physics �e.g., magnon properties could be extracted from dynamic dielectric response
measurements�.
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The existence of magnetic materials that are also
ferroelectrics1–3 upsurge recurrent interest to study and to
rationalize theoretically various models manifesting this pos-
sibility �see, e.g., Refs. 4–7�. The recent discovery of ferro-
electricity in a family of the so-called frustrated magnets
�see, e.g., Ref. 8� is particularly instructive. In this case, fer-
roelectricity is a collateral effect of the magnetic ordering
that, in contrast to earlier multiferroics, involves modulated
structures.9,10 The current interest in this new class of ferro-
electromagnets is twofold. On one hand the fundamental
physics that result from the interplay between the electric
and magnetic properties in these systems is not exhausted10

and, on the other hand, many potential applications arise
from this interplay.11

The appearance of a modulated magnetic structure is ac-
companied by a distribution of polarization due to the inho-
mogeneous magnetoelectric effect.12 This universal effect is
similar to so-called flexoelectric effect in liquid crystals.13

Microscopic studies have focused on the Dzyaloshinskii-
Moriya interaction as the main source of the inhomogeneous
magnetoelectric effect,4 and this idea seems also to be behind
the phenomenological Landau-like approaches carried out
until now in relation to ferroelectricity of magnetic
origin.5,14,15 As a result, the main attention has been put to
only antisymmetric parts of the effect �where the components
of the magnetization enter in an antisymmetric combination�.
However, in a general case, the inhomogeneous magneto-
electric effect has also a nonvanishing symmetric part �see
below�. This is indeed the natural possibility from the phe-
nomenological point of view,12,13 whatever the microscopic
origin of this symmetric coupling.

In this paper we show that this symmetric part of the
inhomogeneous magnetoelectric effect is a key ingredient in
the full description of materials exhibiting modulated mag-
netic structures. When it comes to the uniform polarization,
indeed, only the antisymmetric part of the magnetoelectric
effect plays a role in the agreement with previous theoretical
publications �see, e.g., Refs. 4, 5, and 15 and more details
below�. However, to describe nonuniform, i.e., modulated in
space, polarizations, the magnetoelectric effect has to be con-

sidered in its full extent. This is precisely the case when
addressing the so-called electromagnons, i.e., the normal
modes characteristic of ferroelectromagnets that involve both
polar modes and magnons in a hybridized way.2,16

Electromagnons were theoretically predicted a long time
ago considering uniformly ordered materials.16 This consid-
eration has been recently extended to the case of an anti-
ferromagnet that becomes ferroelectric and then, through
the inhomogeneous magnetoelectric effect, this induces an
incommensurate magnetic structure.17 The first experimental
evidences about electromagnon have been reported for
materials in which, showing no instability toward ferro-
electricity in the absence of magnetism, it is the appear-
ance of a modulated magnetic structure that makes them
ferroelectrics.18,19 Unfortunately, all theoretical studies per-
formed so far for this latter case have been restricted to only
antisymmetric parts of the magnetoelectric coupling.14,20 We
show below that, contrary to what is implicitly assumed in
these works, both symmetric and antisymmetric parts of the
inhomogeneous magnetoelectric effect contribute nontrivi-
ally to the interplay between the fluctuations of magnetiza-
tion and polarization in multiferroics.

First, let us reconsider the uniform polarization that may
arise due to the inhomogeneous magnetoelectric effect. To
simplify our presentation and ease the algebra, we neglect
crystalline-field anisotropy �a more realistic treatment does
not affect our qualitative results�. In this case, the magneto-
electric coupling term reads as

FEM = − f1P · M�� · M� − f2P · �M � �� � M�� , �1�

where P is the polarization and M is the magnetization, and
f1 and f2 are, in general, two different constants. The general
form of this term is −fkl,ijPkMi�lMj,

12 where the magneto-
electric tensor reduces to fkl,ij = f1�ki�lj + f2��kl�ij −�kj�li� in
the isotropic case. Let us split the polarization into uniform P
and nonuniform �modulated� P� contributions: P=P+P�.
From the magnetoelectric term, we then can extract the fol-
lowing contribution to the free energy of the system:21
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− fkl,ijP̄k� drMi�lMj =
P̄k

2
� dr�fkl,ji − fkl,ij�Mi�lMj .

Thus, we see, the uniform polarization indeed couples to the
magnetization only through the antisymmetric part of the
magnetoelectric tensor. In the isotropic case that is fkl,ij
− fkl,ji= �f1+ f2���ki�lj −�kj�li�. Thus, as regards the uniform
polarization, the relevant part of the magnetoelectric term
�Eq. �1�� can be written as − 1

2 �f1+ f2�P · �M�� ·M�
− �M ·��M�, which coincides with the expression given in
�Ref. 5�. However, it is important to keep in mind that there
are actually two independent contributions, f1 and f2, to the
magnetoelectric coupling term.

Let us now turn our attention to the magnetic features of
the modulated magnets discussed in, e.g., Ref. 10. As we
have mentioned, in these systems ferroelectricity is induced
by magnetism and does not appear spontaneously by itself.
In addition, the magnetoelectric effect is typically weak in
comparison to pure magnetic contributions into the free en-
ergy. Therefore, in the first approximation, when determining
the magnetic structure and dynamics it is possible to consider
the magnetization separately.

Most of these systems first undergo a transition from the
magnetically disordered phase to a modulated structure simi-
lar to a longitudinal spin-density wave �LSDW�;

M = �M1 cos Qx,0,0� , �2�

and then to a structure similar to a planar cycloid �PC�,

M = �M1 cos Qx,M2 sin Qx,0� . �3�

The dependence on P of Landau free-energy density can be
taken as 1

2�−1P2+FEM, where � is the dielectric susceptibility
in the absence of magnetism22 and FEM accounts for the
magnetoelectric coupling. It can be easily seen that the inho-
mogeneous magnetoelectric effect �Eq. �1�� implies the ap-
pearance of ferroelectricity as a result of the PC structure,
but not of the LSDW �Ref. 5�.

A simple way to reproduce this sequence of transitions is
by considering Landau free-energy density in the form,

FM =
a

2
M2 +

b

4
M4 +

1

2�
i

MiL̂iMi, �4�

where the differential operators L̂i describe the anisotropic
softening that gives rise to the modulated structures. For

small wave vectors one can approximate L̂i=c�2. The free
energy �Eq. �4�� then is reduced to a familiar form �see, e.g.,
Ref. 23�. Near the wave vector Q= �Q ,0 ,0� of the modulated

structures a+ L̂i��i+cx�x
2+c��

2 . Equation �4� is then a
natural generalization of the free energy considered in Refs.
5 and 15 that provides the unified description of the spectrum
at the relevant wave vectors �i.e., q=0 and �Q�. If a ,b ,c
�0, the system shows no instability with respect to uniform

magnetizations. Furthermore, if �x	�y 	�z, in the spirit of
arguments presented in Refs. 5 and 15, one can see that the
free energy is minimized by the LSDW modulation in the
parameter range �x	0, �y �0, while the PC configuration
occurs when �x	0 and 3�x
�y 
�x /3 �with �z�0 in both
cases�.

At this point, it is worth making the following comment
on the label “improper ferroelectrics” that is frequently
put to the systems of our interest �see, e.g., Ref. 10�.
Within the above scenario My or, more precisely, its �Q
Fourier components, can be seen as the order parameter of
the LSDW-paraelectric↔PC-ferroelectric transition. In the
LSDW-paraelectric state �Eq. �1�� has a term coupling My
and Py linearly so, in view of this linearity, the system should
be labeled as proper rather than improper ferroelectric.24 This
is in fact manifested in the corresponding anomalies.5

As regards the dynamics, we are interested in the low-
frequency excitations of the system. In the magnetically or-
dered phases, not too close to the transition points, these
excitations are associated with variations of the magnetiza-
tion in which its modulus is conserved. Thus the excitations
are described by the Landau-Lifshitz equation,23

Ṁ = �M � Heff, �5�
where � is a constant and Heff= �L̂xMx , L̂yMy , L̂zMz�.

The dispersion relations and correlation functions of our
interest are obtained by linearizing this equation about the
corresponding configurations of equilibrium. Then it is con-
venient to consider first of all the LSDW structure �Eq. �2��,
and then a virtual transverse spin-density-wave �TSDW�
modulation,

M = �0,M2 sin Qx,0� . �6�
This would be the structure obtained from Eq. �4� if, contrary
to what we assumed for the LSDW, �y becomes negative
with �x�0. This structure TSDW is of interest in its own
right and besides, it turns out that the low-lying normal
modes of the PC case can be found as the superposition of
the normal modes associated with LSDW and TSDW struc-
tures. This notably simplifies the corresponding calculations.

Skipping a large amount of tedious �although straightfor-
ward and simple� algebra, we come to the following results.
They are obtained under the same assumptions as those for
the static problem. That is, assuming that the anharmonicity
is weak and that the spatial dispersion such that the general-
ized stiffness presents well defined minima only at the wave
vectors q=0, �Q. This allows us to decouple the modes q
and q�Q from the rest.25 For our purposes, higher-order
satellites can be neglected.

As it could be expected, the low-lying modes of the
LSDW represent independent oscillations of the magnetiza-
tion along the y and z axes. The corresponding dispersion
relations are such that

�y,z
2 �q� = �2mx

2��z,y − �x + cxqx
2 + cq�

2 ��− �x + cq2� , q → 0,

mx
2�ãz,y − 2�x + cq�2���y,z − �x + cxqx�

2 + cq��
2� , q = Q + q��q� → 0� .

	 �7�
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Here mx=�M1 /2 and the quantities �̃i are defined such that

L̂ie
�i2Qx= �̃ie

�i2Qx. It is worth noticing that the closer the
transition is, the smaller is the gap obtained at small wave
vectors. Not only because of the smallness of mx, what in-
fluences trivially on the whole spectrum, but also because
�x→0. In fact, very close to the transition point �y,z�q
→0�
q. The gap obtained close to the wave vector of the
modulation, on the contrary, is not so sensitive to the small-
ness of �x.

Similar expressions are found for the TSDW structure
�Eq. �6��. In this case, the low-lying modes are associated
with oscillations of the magnetization along the x and z axes.
Their dispersion relations can be obtained from Eq. �7� by
replacing y↔x in mx, �i, and �̃i.

As we have mentioned, these results for the LSDW and
TSDW structures merge in the PC case. Three low-lying nor-
mal modes are found such that the modulus of the magneti-
zation is conserved in this latter structure. The modes asso-
ciated with oscillations along the x and y axes coincide with
that obtained previously for the TSDW and LSDW modula-
tions, respectively. Consequently, they have the same disper-
sion relations. The mode representing oscillations along the z
axis, however, is composed by the modes associated with the
same type of oscillation in the TSDW and LSDW cases. In
consequence, its dispersion relation can be expressed such
that �z,PC

2 �q�=�z,LSDW
2 �q�+�z,TSDW

2 �q�.
Let us now turn our attention to the fluctuations. Since the

softness of the system is in its magnetic part, fluctuations of
the magnetization �M will play the main role. Once Eq. �5�
is linearized, the corresponding correlation functions,

Mij�q� � ��Mi�q,���Mj�− q,− �� , �8�

can be found with the aid of the fluctuation-dissipation
theorem.23 Within a first approximation, the polarization will
follow these fluctuations in accordance with the magneto-
electric coupling �Eq. �1��. This results in fluctuations of the
polarization �P of magnetic origin, i.e., electromagnons,
whose correlation functions,

Pij�q� � ��Pi�q,���Pj�− q,− �� , �9�

can be expressed in terms of the previous quantities �Eq. �8��.
The hybridization between magnons and polar modes reflects
also in the form of cross correlation functions ��Pi�Mj.
Within our approximation, these cross correlations can also
be expressed in terms of the quantities �Eq. �8��. However
since they essentially reveal the same information �see e.g.
Ref. 26�, we omit them in the following.

As regards magnetic correlation functions, the “nondiago-
nal” components are zero for the structures of our interest
�Mij =0 if i� j�. In addition, Mxx=0 in the LSDW case while
Myy =0 in the TSDW one. Close to the relevant wave vec-
tors, the nonvanishing correlation functions are such that
Mii

−1�q�����2−�i
2�q��2+�−2�2�, where � is the �phenom-

enological� relaxation time of the corresponding oscillations.
The fluctuations of the polarization of magnetic origin can

be described in terms of the quantities Mii. These fluctuations
are such that the soft magnetic behavior at q� �Q reflects
in dipole polarization excitations with small wave vectors.

And reversely, the soft magnetic response at q→0 reflects in
polarization excitations with q� �Q, as can be seen in fur-
ther formulas. Note also that the magnetoelectric coefficients
f1 and f2 enter separately in the following results. That is, not
only through the combination f1+ f2 that determines the an-
tisymmetric part of the magnetoelectric effect and, conse-
quently, the space average of the polarization of the system.
�The q-dependence associated with � �Ref. 22� is implicit in
these formulas.�

In the LSDW case we have

Pxx�q� 
 f1
2�qy

2�Myy�q − Q� + Myy�q + Q��

+ qz
2�Mzz�q − Q� + Mzz�q + Q��� ,

Pyy�q� 
 g−2
2 �q�Myy�q − Q� + g+2

2 �q�Myy�q + Q� ,

Pzz�q� 
 g−2
2 �q�Mzz�q − Q� + g+2

2 �q�Mzz�q + Q� ,

Pxy�q� 
 f1qy�g−2�q�Myy�q − Q� − g+2�q�Myy�q + Q�� ,

Pxz�q� 
 f1qy�g−2�q�Mzz�q − Q� − g+2�q�Mzz�q + Q�� ,

and

Pyz�q� = 0,

where g�2�q�= �f1+ f2�Q� f2qx. In the case of a pure sym-
metric coupling �f1=−f2�, with no Dzyaloshinksii-Moriya-
like contributions, all these correlation functions turn out to
be q2. In consequence, the eventual importance of fluctua-
tions of the polarization with small wave vectors is condi-
tioned to the existence of a nonvanishing antisymmetric part
in the magnetoelectric coupling. In any case, fluctuations
with wave vectors q� �Q are important irrespective to the
above vanishing �they are entirely due to f1�0�. These
“magnetic” softenings of optical phonons in the LSDW para-
electric state can be used to measure the corresponding co-
efficients f1 and f2. This soft behavior in the absence of
ferroelectricity has in fact been observed in Ref. 19.

Similarly, for the TSDW structure we find that

Pxx�q� 
 f2
2qy

2�Mxx�q − Q� + Mxx�q + Q�� ,

Pyy�q� 
 g−1
2 �q�Mxx�q − Q� + g+1

2 �q�Mxx�q + Q�

+ f1
2qz

2�Mzz�q − Q� + Mzz�q + Q�� ,

Pzz�q� 
 f2
2qy

2�Mzz�q − Q� + Mzz�q + Q�� ,

Pxy�q� 
 f2qy�g−1�q�Mxx�q − Q� − g+1�q�Mxx�q + Q�� ,

Pxz�q� = 0,

and

Pyz�q� 
 − f1f2qyqz�Mzz�q − Q� + Mzz�q + Q�� ,

where g�1�q�= �f1+ f2�Q� f1qx. As in the previous case, the
relevance of fluctuations of the polarization with small wave
vectors is made conditional on the antisymmetric part of the
magnetoelectric coupling, while the relevance of fluctuations
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with wave vectors close to that of the modulated structure is
not.

Finally, armed with the knowledge of correlation func-
tions for LSDW and TSDW structures, we are in the position
to calculate the polarization correlation functions in the PC
case as Pij

LSDW+ Pij
TSDW+�Pij. Here the first two terms repre-

sent the correlation functions obtained in for the LSDW and
TSDW modulations, respectively, and the third one is

�Pxx�q� 
 qx
2�f1

2�x�q,Q� + f2
2�y�q,Q�� ,

�Pyy�q� 
 qy
2�f2

2�x�q,Q� + f1
2�y�q,Q�� ,

�Pzz�q� 
 f2
2qz

2��x�q,Q� + �y�q,Q�� ,

�Pxy�q� 
 f1f2qxqy��x�q,Q� + �y�q,Q�� ,

�Pxz�q� 
 f1f2qxqz��x�q,Q� + �y�q,Q�� ,

and

�Pyz�q� 
 f1f2qyqz��x�q,Q� + �y�q,Q�� ,

where �i�q ,Q�=mi
2�Mii�q−Q�+Mii�q+Q��. These addi-

tional contributions are relevant for the fluctuations with
wave vectors close to �Q. It is worth noticing that, within
our approximations, there are no contributions m1m2 to
these correlations functions.

In summary, we have presented the key aspects of the
phenomenological theory of ferroelectricity of magnetic ori-

gin that allow one to treat consistently, on the same footing,
uniform and nonuniform polarizations. One of its key points
is the accounting for all the possible contributions, symmet-
ric and antisymmetric ones, to the inhomogeneous magneto-
electric effect. Considering the most representative modu-
lated magnetic structures, we have employed this theory to
study the corresponding fluctuations of magnetization and
polarization. Our main findings are the following: �i� The
aforementioned fluctuations turn out to be interdependent as
long as magnetic order appears, irrespective of whether this
order induces a uniform polarization or not. This implies that
ferroelectricity may not be strictly necessary when address-
ing applications based on such an interplay. �ii� The softness
of the system reveals in the form of large fluctuations at both
small wave vectors and wave vectors close to that of the
modulated structure. At small wave vectors, the fluctuations
of the polarization of magnetic origin can be associated with
the antisymmetric part of the magnetoelectric effect �which
eventually gives rise to the uniform polarization of the sys-
tem�. At wave vectors close to that of the modulated struc-
ture, however, the situation is different. In this case, the fluc-
tuations are due to both symmetric and antisymmetric parts
of the effect. Consequently, in view of the relativistic nature
of the antisymmetric part, one can expect here a leading role
of the symmetric contribution �which has its origin in the
exchange interaction�.
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